Order the angles from least to greatest.

1.

2. In ΔTUV

$$UV = 17 \text{ yd}$$

$$TV = 14 \text{ yd}$$

$$TU = 9 \text{ yd}$$

Order the sides of the triangle from greatest to smallest.

3.

4. In ΔSTU

$$m \angle S = 50^{\circ}$$

$$m \angle T = 70^{\circ}$$

$$m \angle U = 60^{\circ}$$

5.

6. In ΔDEF

$$m\angle D = 35^{\circ}$$

$$m \angle F = 95^{\circ}$$

State if the three numbers can be measures of sides of a triangle.

Two sides of a triangles have the following measures. Find the rand of the possible measures for the third side.

10. 9, 5,

11. 6, 10

12. 14, 11,

Use the figure at the right for Exercises 1-3.

- 1. If RU = 16, UT = 20, and SR = 16, what is the perimeter of $\triangle SUT$?
- 2. If SV = 38, SU = 26, and the perimeter of $\triangle SUV$ is 102, what is the value of RU?
- 3. If $\overline{SV} \cong \overline{UV}$, SR = 4x 1, and RU = x + 8, what is the value of SU?

Use the figure at the right for Exercises 4 and 5.

- **4.** If $m \angle BAC = 33^\circ$, BC = 18, and CD = 18, what is $m \angle DAB$?
- 5. If $m \angle DAB = 74^\circ$, $m \angle CAD = 37^\circ$, and BC = 9.2, what is the value of CD?

For Exercises 6-8, find the values.

- 6. m, p
 - $(2p-5)^{\circ}$ $(p+5)^{\circ}$ 2m K
- 7. r, UW

8. *y*, *m*∠*DEF*

Solve the Proportion.

13.
$$\frac{9}{8} = \frac{k+6}{6}$$

$$\frac{10}{p+2} = \frac{4}{3}$$

15.
$$\frac{6}{b+9} = \frac{4}{b+5}$$

Solve for the variable.

16.

17.

11.

12.

13.

14.

15.

16.

List the angles of ΔABC from smallest to largest.

A(4, -3), B(3, 2), C(5, -4)

The triangle inequality states that the sum of any two sides of a triangle must be greater than the third side.

